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SUMMARY 

This paper introduces a finite volume method to solve 2D steady state convection-diffusion problems on 
structured non-orthogonal grids. Overlapping control volumes (OCV) are used to discretize the physical domain 
and the governing equations are solved without transformation. An isoparametric formulation is used to compute 
diffusion and for upwinding. Four test problems are solved using this and other schemes. The modelling of 
difhsion in OCV seems very effective even on distorted meshes. The convection modelling in OCV is found to 
be second-order-accurate, like QUICK, on regular meshes. Although its accuracy is slightly inferior to the latter 
on rectangular grids, its faster convergence gives it a better overall performance. On non-orthogonal grids, OCV 
gives better accuracy for a large and practical range of Peclet numbers than does QUICK applied to the 
transformed equations using the conventional five-point diffusion modelling. The results obtained also 
demonstrate that the scheme reduces false diffusion to a considerable extent in comparison with the power-law 
scheme. 

KEY WORDS overlapping control volume; finite volume method; convectiodiffusion; numerical diffusion; structured 
non-orthogonal grid 

1. INTRODUCTION 

In fluid flow and heat transfer problems, convection and diffusion are usually of primary interest. 
Therefore a numerical scheme for fluid flow and heat transfer can be tested on the convectiow 
diffusion equation which, while incorporating similar processes, is simpler to solve and, being linear, 
has some known analytic solutions. 

A major difficulty in numerically modelling flow equations is in discretizing the convection term. 
The use of central differencing for the convection term makes the numerical scheme unstable for grid 
Peclet numbers greater than two. Simple upwinding, although it gives stability, introduces ‘false 
diffusion’. For intermediate Peclet numbers the upwind scheme can be modified to blend the 
advantages of the central and simple upwind approximations, as for example in the power-law 
scheme.’ The problem of false (‘crosswind’) diffusion becomes more pronounced when the flow is 
oblique to the grid lines.’-’ The skew upstream differencing scheme (SUDS) of Raithby,’ QUICK of 
Leonard6 and its variants%” are able to reduce the level of crosswind diffusion significantly for 
oblique flows. 

The geometrical complexity of domains poses another challenge in applying computational 
methods to practical flow situations. The use of simple rectilinear finite difference grids for arbitary 
domains makes boundary condition implementation difficult and may induce computational error due 
to interpolation. The use of boundary-fitted co-ordinates allows selective refinement near the 
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boundary walls and in the interior of the flow where steep gradients exist and thus reduces the need 
for additional storage and time which would be required if a global refinement were carried out. 
However, the implementation of essentially finite difference schemes such as QUICK on body- fitted 
grids requires us to map the non-orthogonal grid onto a regular rectangular mesh on which the 
transformed equations (see e.g. Reference 11) are solved. (The general-purpose codes FLUENT, 
PHOENICS and CFDS-FLOW3D use QUICK in such a role.) The transformed equations are quite 
complex if the body-fitted grid is not orthogonal. Generally, for orthogonal body-fitted meshes, little 
control is achievable over the distribution of grid points and their spacing. On the other hand, non- 
orthogonal meshes can easily be generated by transfinite interpolation or other means and their 
spacing can be controlled. 

However, owing to the complexity of the transformed equations for non- orthogonal grids, other 
methods have been evolved which solve the governing equations on the physical domain itself. The 
major work in this area started after Hsu,” Rhie,I3 PericI4 and others. Mukhopadhyay et al.I5 and 
Hwang16 have developed noteworthy algorithms for flows in arbitary geometries without the use of 
transformation. The control volume k i t e  element  method^'^-^' (CVFEM) for arbitrary geometry are 
similar in spirit. 

In this study we attempt to develop a scheme, applicable directly on non- orthogonal grids in 
arbitrary geometries, which is simple to implement and yet is accurate. The method uses overlapping 
control volumes, an idea mentioned by Hirsch2* but scarcely investigated in the literature. The 
convection-diffusion equation in Cartesian co-ordinates is solved in domains of varying complexity. 

2. FORMULATION 

Most of the extant finite volume methods avoid overlapping control volumes by defining and using 
intermediate points. The values of the variables on these intermediate points are often obtained by 
line interpolation from the neighbours. On non-orthogonal gnds it may be preferable to use higher- 
order finite-element-type shape functions for interpolation. To do this, it is convenient to avoid 
intermediate points and, by accepting overlapping control volumes, to use the neighbouring points 
directly in the computations. 

The solution domain is discretized into a structured non-orthogonal grid as shown in Figure l(a). 
This can be done by any gnd generation package for boundary-fitted systems. A typical control 
volume is shown by the shaded area in the figure and also in Figure l(b). This choice of control 
volume uses the grid point co-ordinates directly, without computing any intermediate points, to form 
control volumes. It can be seen that each interior grid point has a control volume associated with it, of 
which it is the central node. Hence we can refer to these control volumes by the index of this central 
node, e.g. the control volume for (i, j) is shown in Figure I(b). It can be seen that adjacent control 
volumes will overlap to some extent. A collocated or non-staggered arrangement is used for the 
dependent variables. 

2.1. Governing equations for a control volume 

Now we apply the conservation laws to the typical control volume to get the algebraic discrete 
equations. The conservation form of the two-dimensional steady state convection-diffusion equation 
for a scalar 4 is 
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where p is the density, 0 is the velocity vector having components u and v in the directions x and y 
respectively, r is the diffusion coefficient and S+ is a source term. On integrating equation (1) over 
the control volume and applying the Gauss divergence theorem, we get 

where dl is an elemental length on the boundary (cs) of the control volume and n, and nr are the 
direction cosines of the outward normal n̂  of dl. The area of the control volume (z, j )  in Figure 1 (b) is 
calculated using the formula 

where xi, j + ,  , yi, j + l ,  etc. are the co-ordinates of the neighbouring points shown in Figure l(b). 

follows. 
The contour integration is counterclockwise. The terms in equation (2) are further approximated as 
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2.2. Convection term 

Using the midpoint rule, we approximate the convection term as 
4 

k= I 
4 

k= 1 

4(pun, + pvn,)dl = C 4(k)(pu(k)Ay(k) - p ~ ( ~ ) A x ( ~ ) )  

= C 4(k)F(k), (3) 

where the superscript (k)  refers to the edges of the control volume (shown circled in Figure I(b)). For 
the edge (k), k =  1, 2, 3, the approximation used is (assuming constant density p )  

u(k)  = 0'5(uk f uk+l), dk) = 0.5(~k f 4 + 1 ) ,  Ay(k) =yk+l -yk,  = X k + l  - x k ,  

where the subscript k refers to the local grid point number (shown in Figure l(b)). For k=4, u ~ + ~ ,  
uk+l, etc. are replaced by u l ,  vl,  etc. respectively in the above equations. The outward mass flux 
through the edge k is 

F(k)  = (puAy - (4) 

To incorporate upwinding, I $ ( ~ )  in (3) is approximated at the midpoint of control surface k by 
interpolation within the appropriate control volume depending on the flow direction across that 
surface. For example, if F( ' )  is negative (i.e. flow is entering the control volume across face l), then 
d,(I) is approximated by interpolation within the control volume for node (i - 1 , j  - 1). That is, the 
values at the grid points constituting control volume ( i  - 1, j - I), through which the flow enters 
control volume (i, j ) ,  are used for the interpolation of 4") at the centre of surface 1. Otherwise, if F( ' )  
is positive, the values at the grid points of control volume (i, j )  are used to interpolate 4(') at surface 
1. This scheme for convective modelling is obviously conservative as it always uses the upwind 
control volume. The method used for interpolation is based on finite-element-type shape functions 
and is explained below. 

2.3. Interpolation 

Control volume (i, j )  is mapped onto a square in (<, q)-space as shown in Figure 1 (c), with node 
(z, j )  at (0, 0) and the other nodes at the vertices ( f 1, f 1) respectively. The following shape 
hnctions are used for the interpolations: 

N ,  = 0.25(-( - 11 + gy) + 0.125(t2 + q2), 

N3 = 0.25(( + 
N5 = 1 - 0.5(t2 + g2). 

The isoparametric formulation is used and the dependent variable 4 and the co-ordinates x and y in 

N2 = 0.25(< - y - ( q )  + 0.125(t2 + q 2 ) ,  

N4 = 0.25(-5 + V/ - t q )  + 0.125(t2 + q 2 ) ,  + (y) + 0,125(t2 + q2), ( 5 )  

the control volume are represented as 
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where the xi and yi are the x-  and y-co-ordinates of the five grid points respectively. Equations (7) and 
(8) map the control volume in Figure l(b) onto the transformed control volume in (5, ?)-co-ordinates 
shown in Figure l(c). 

For the purposes of upwinding, q5@) is found by using (6) to interpolate the value at the midpoint of 
face k in the transformed control volume. For example, for face 1 we compute Nl, N2, . . . , N5 at 
< = 0, y~ = - 1 and then use (6). 

The derivatives of the dependent variable 4 are defined as 

where the derivatives of the shape functions and the determinant of the Jacobian respectively are 
given by 

The derivatives with respect to < and y~ can be computed using equations (5)-(8). 

2.4. Diffusion term 

using the midpoint rule. The discretized equation is represented as 
The control volume is in each case the control volume for ( i , j ) .  This term is also approximated 

where A#') and AY(~) are the same as defined for convection discretization. The derivatives of the 
shape functions are evaluated at the midpoints in (g, ?)-space of the control surfaces. The summation 
is carried out over all the surfaces of the control volume. The procedure to evaluate the derivative 
terms has been explained above. It can be noted that this discretization for the diffusion term is not 
conservative. However, we invariably found the final converged solution to satisfy closely the 
conservative property of the scalar. It can be shown that on a regular grid the diffusion modelling in 
OCV is second-order-accurate and has exactly the same error as the conventional five-point central 
difference discretization. 

2.5. Source terms and boundary conditions 

The source term S can be represented in the general form 

s4 = s, + sp4, (14) 

where S, and S, are stored at the cell centre and are assumed to prevail over the entire control volume. 
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In the proposed scheme, fictitious boundaries are created along the domain boundary as shown in 
Figure l(a) by broken lines. The values of the scalar 4 at these fictitious points are specified using 
quadratic extrapolation. These additional grid points are needed for the upwinding and diffusion term 
calculations at the grid points on the boundary (for Neumann boundary conditions) or next to the 
boundary (for Dirichlet boundary conditions). 

2.6. Solution procedure 

Finally, with the above formulation the discretized equation for the convectiodiffusion equation 
(1) can be written as 

~ p 4 p  = C a n b 4 n b  + b, (1 5 )  
nb 

where 4p is the (unknown) scalar value at the central node and $nb are the (unknown) values at the 
neighbours (including those for neighbouring control volumes introduced by upwinding). The 
coefficients ap and 

The coefficient matrix may lose its diagonal dominance in highly convective flows and the iterative 
scheme may thus become unstable. To facilitate iterative convergence, the terms with negative 
coefficients are removed from the summation in (15) and are included in b. The GaussSeidel 
iteration technique is used to solve the discretized equation. Except for very mild overshoots and 
undershoots for problems with step input and at high Peclet number, no major difficulties were 
encountered in solving the variety of test problems reported in this paper. 

are given in the Appendix. 

3. RESULTS 

A number of steady state convection4iffusion problems are now solved by the overlapping control 
volume (OCV) method and the results are compared with those of other schemes. These test 
problems and the results obtained are discussed in this section. In all cases the governing equation is 
(1) with p = 1. The computed solutions are compared with the exact solution, with the RMS error 

Figure 2(a). Schematic diagram of test problem 1 
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where the summation is over all A4 interior points of the domain. 
When other schemes are used for comparison, in all cases the method of iteration is the same: 

GaussSeidel using a 'positive-coefficient-only' matrix, with the coefficients in equation (1 5 )  varying 
with scheme used. All computations were done on a DEC-3000 computer. 

3.1. Test Problem 1 

This test problem is used to show the efficacy of the convection modelling of the OCV method. 
Comparisons with the power-law scheme and QUICK6 are presented for a range of grid levels. The 
computational domain and boundary conditions are shown in Figure 2(a). The velocity components 
are defined as u = -y and w = x .  If the problem is purely convective (r = 0), then any scalar profile 
specified along OA in Figure 2(a) should be swept unchanged along the streamlines and reproduced 
at OB (after going through a 270" turn). 
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The computational domain is discretized using N x N uniform grids with N =  31,  41, 51, 61, 71 
and 8 1. The diffusion coefficient r = p = 1 andL = 2 are used in the computations. The smooth 
profile specified along OA is the Gaussian distribution 4 = e2Ix1 sin'(7c.x). The percentage RMS error 
for the points on OB (not for the entire domain) for power-law, QUICK and OCV at various grid 
levels are shown in Figure 2(b) on a log-log scale. It can be seen that the percentage RMS error for 
the OCV scheme is much less than that for the power-law scheme. However, the performance of 
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QUlCK is best in this case. To estimate the order of accuracy for a smoothly varying solution, the 
error level E can be assumed to vary in proportion to Ax", where m is the order of accuracy. The 
exponents for the power-law, QUICK and OCV schemes are found to be 0.606, 2.004 and 2.054 
respectively. This shows that the convection modelling used in the OCV scheme is, like QUICK, 
second-order-accurate. The error of OCV is slightly larger than that of QUICK. 

The CPU times taken by the various schemes obviously play some part in our estimation of them. 
We compare Em, versus CPU time in Figure 2(c) for the same cases. We find that OCV, because it 
converges faster than QUICK, gives better accuracy for a given CPU time. The power-law scheme 
performs relatively poorly in comparison with the other two schemes. 

3.2. Test problem 2 

This problem, used by R ~ n c h a l , ~  is shown in Figure 3(a). The inner and outer surfaces of a 
cylindrical annulus are maintained at constant 41 and 42 (assumed as unity and zero respectively). 
The Cartesian velocity components are represented as u = 2 F ' y  and v = -2r"-'x. Two values of 
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Figure 3(d). Ems versus CPU time for test problem 2 (n = 3) 

the constant n are considered: n = 1, representing solid body rotation with angular velocity w = 2, and 
n = 3, for which the angular velocity is w = 2?. 

The problem is one-dimensional in cylindrical co-ordinates, hence its exact solution can be 
obtained easily. However, in the Cartesian co-ordinate system this problem becomes two- 
dimensional. The exact solution for all Peclet numbers and values of n is given by 

where rl and r2 are the inner and outer radii of the annulus respectively. 
The computational domain is the square shown in the figure and is divided into N x N grid points. 

In this problem we take rl = 1 and r2 = 3. The exact solution is used to specify the Dirichlet boundary 
conditions along the boundaries of the square domain. 

We compare the results of the OCV scheme with those of the power-law and QUICK schemes for 
this problem for a range of Peclet numbers fiom 0-01 to 10,000, where Pe = w</T. It should be 
noted, however, that this is only the nominal Peclet number (based on the inner radius of the annulus). 
The true Peclet number Vfi/r  (the side of the square is &) is a variable and its value at the 
midpoint of the domain is 2& and 8& times the nominal value for n = 1 and 3 respectively. 

Figure 3(b) shows the percentage RMS error for n = 1 and 3. The OCV scheme shows better results 
than the power-law scheme, but QUICK is best for this case. For low Peclet numbers the schemes 
show nearly the same error, since the diffision modelling in power-law and QUICK is the same 
central difference scheme and that of OCV is equivalent. 

In Figure 3(b) for n = 3 the percentage RMS error for the power-law scheme increases very rapidly 
with the Peclet number, whereas Ems for QUICK and OCV remains almost same as that for n = 1. 
Figure 3(c) can be used to estimate the order of accuracy of the schemes for a range of Peclet 
numbers, Pe = 10, 100 and 1000. The value of n used to specify the velocity fields is n = 1. Five 
different grid levels, N =  1 1, 2 1, 3 1,41 and 5 1, are used. It can be seen that the slope of the Em, line 
for OCV is nearly same as that for QUICK and the accuracy is much better than that of the power-law 
scheme. The exponents m, the same as defined in test problem 1, for the power-law, OCV and 
QUICK are found to be 1.65, 2.25 and 2.40 for Pe=  10, 0.88, 2.28 and 2.55 for P e =  100 and 0.88, 
2.27 and 2.56 for Pe=  1000 respectively. Once again OCV demonstrates that it is a second-order 
method. QUICK is somewhat better than OCV at all Peclet numbers for the same grid size. 

However, we compare Ems versus CPU in Figure 3(d) for Pe = 100, n = 3, which is typical, and 
once again find OCV slightly better than QUICK for the same CPU time. 
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3.3. Test Problem 3 

This problem is designed to test the applicability of the proposed scheme to arbitrary geometries. 
The details and exact solution of this problem are the same as those of test problem 2. The only 
difference is that the interior grid points are randomly perturbed from their original uniform grid 
positions to a maximum extent of 10 per cent of the average grid distance. The domain and grid for 
N =  11 are shown in Figure 4(a). 

We now consider four schemes for this problem. The power-law and QUICK schemes (both with 
the conventional central difference diffusion modelling' I )  are used for the transformed equation 
generated by mapping the grid shown in Figure 4(a) onto a rectangular grid. This is simply to map the 
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points x( i ,  j )  and y(i, j )  onto i A l  andjAq on the (c ,  q)-plane. The other two methods we consider are 
those of Hwang16 and OCV which apply directly on the grid in the physical plane. The diffusion 
modelling presented by Hwang16 (taken from Reference 22)  is used here along with the power-law 
method for convection. 

Figure 4(b) shows a comparison of the errors obtained on the N =  11 grid for n = 1 and 3. It can be 
seen that at Peclet numbers at least up to 100 the OCV scheme gives the best results. This result is 
repeated for values of N = 2 1, 3 1 , 4  1 and 5 1 and also for grid distortions of 3 per cent and 5 per cent. 

Figure 4(b) also shows (in the limit of Pe -+ 0) that the OCV diffusion modelling is superior to that 
of Hwang,16 which in turn is superior to the (transformed) central difference diffusion modelling. It is 
clear that the Laplacian term introduces an error into the schemes for the transformed equations 
which has a deleterious effect on their accuracy except at high Peclet numbers (remember that the 
actual Peclet number of the problem is higher than the nominal values used in the figures). This 
conjecture was confirmed by studying the case of pure diffusion on the distorted grid. It was seen that 
the error in the schemes relying on transformation increases very rapidly with the degree of distortion 
in the grid. Figure 4(c) shows Em, versus N for the four schemes for Pe = 10, 100 and 1000 for n = 3 .  
In all these cases the power-law schemes give approximately the same results. It can be seen that for a 
Peclet number of 10 the accuracy and the improvement with N are best for OCV. For Pe = 100, OCV 
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Table I. CPU "me (seconds) and number of iterations for convergence (in parentheses) for Pe = 10, n = 3 

Grid Power-law (Hwang) ocv QUICK Power- law 
- 

11 x 11 0.00195 ( 5 )  0.00585 (24) 0.03025 (34) 0.00195 ( 5 )  
21 x 21 0.00976 (1 1) 0.02342 (22) 0.18446 (41) 0.00976 ( 1  1) 
31 x 31 0.03025 (21) 0.04684 (1 8) 0.50849 (50) 0.03025 (21) 
41 x 41 0.07515 (35) 0.09174 (19) 1.03356 (66) 0.08003 (35) 
51 x 51 0,16299 (47) 0.24490 (47) 2.43122 (87) 0.18153 (46) 

and QUICK are comparable. Only above that Peclet number does QUICK (in the transformed 
domain) perform better. Therefore on distorted grids it may be supposed that OCV has a better 
performance in the range of practical grid Peclet numbers. 

The variation in Em, versus CPU time is shown in Figure 4(d) for Pe = 100, n = 3, a typical case. 
The OCV scheme does better than QUICK. The power-law schemes on both transformed and 
physical domain also do well, presumably because their superior convergence properties outweigh 
their first-order accuracy. 

The CPU times (in seconds) are given in Table I for the various schemes at different N. The 
quantities in parentheses are the iterations needed to reach convergence (residual of lop7 with 
double- precision arithmetic). QUICK is seen to be expensive and to become increasingly so with 
grid refinement, not only taking more CPU time per iteration but also requiring a greater number of 
iterations. It must be mentioned that the relatively poor performance of QUICK in the CPU time 
computations can be attributed directly to the poor convergence properties of the coefficient matrix of 
the scheme used in equation (15). This matrix will not be used in explicit time stepping and will be 
different for implicit time stepping. Therefore the performance of QUICK here is uniquely for the 
steady state solution and extrapolating to unsteady solutions would be injudicious. 

3.4. Test Problem 4 

This model problem, first proposed by Raithby? is widely used to test the cross-stream numerical 
diffusion of difference schemes. 

The problem is shown in Figure 5(a). The flow is assumed uniform and passing through the square 
domain, making an angle such that the streamline through (0, yc)  passes through the centre of the 
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Figure 5(d). Results of test problem 4 for yc = 5 

square. The scalar field at the left (inflow) boundary has an abrupt step change, with 4 = 1 above yc 
and Q = 0 below. The Peclet number is taken as infinity and thus the scalar property is transported by 
convection only. The boundary conditions are shown on the figure. The value of 4 is assumed to be 
0.5 at the point of the step change, y =yc, x = 0. The exact solution for this problem is the convection 
of the step change in the flow direction without any diffusion. Thus Q= 1 above the slanted line 
shown and 

A regular 11 x 11 grid is used to discretize the solution domain. The results at the midplane 
(x = 0.5) are shown in Figures 5(b)-5(d) for r = and y, = 0, 3 and 5 respectively. The results of 
the OCV scheme are compared with those of the power-law and QUICK schemes. Figure 5(b) shows 
that OCV gives minimum smearing errors compared with all other schemes at yc = 0. This is the 
worst case for all other schemes. For y c = 3  it can be seen from Figure 5(c) that the levels of 
overshoots and undershoots are approximately of the same order for OCV and QUICK. The power- 
law scheme again gives maximum crosswind diffusion, but there is no overshoot or undershoot. At 

= 0 below it. 
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yc = 5 ,  when the flow is aligned with the grid lines, it can be observed from Figure 5(d) that all other 
schemes except OCV give the exact solution. The OCV scheme introduces small overshoots and 
undershoots in this case. 

Thus OCV introduces cross-stream numerical diffusion, except for the case where the flow is 
aligned with the grid lines, at levels below that of the power-law scheme and comparable with 
QUICK. However, like QUICK and other higher-order schemes, OCV allows overshoots and 
undershoots. 

4. CONCLUSIONS 

The following observations can be made on the basis of the results described above. The proposed 
OCV scheme performs consistently well in all the test cases. 

The OCV treatment of diffhion seems to be quite effective even on distorted meshes. On uniform 
meshes it is second-order-accurate. For convection- dominated flows the OCV treatment of the 
convection term, like that of the QUICK scheme, is second-order-accurate on a uniform mesh. 
Although the OCV scheme does not perform as well as QUICK for the same grid size, it does bettter 
for the same CPU time. 

When both convection and diffusion processes are significant, the results obtained using OCV are 
quite encouraging on non-orthogonal meshes. It does much better than the power-law scheme. Its 
accuracy for the non-orthogonal test problem attempted is comparable with the QUICK scheme used 
with central difference modelling, while it is computationally less expensive. An interesting sidelight 
to these results is offered by Leonard and D r u m m ~ n d ~ ~  demonstrating the superiority of QUICK to 
‘hybrid’, ‘power-law’ and other exponential schemes. 

Two other issues perhaps need to be mentioned: the extension of the scheme to three dimensions 
and the applicability of flux limiter procedures. It is possible that the latter may be applied to this 
scheme without major difficulty as they have been to other finite volume schemes.24 However, 
extension of the scheme to three dimensions, it seems, cannot be a direct generalization and needs to 
be done by analogy, i.e. by developing a 3D scheme that uses similar principles. This is decidedly a 
disadvantage of this scheme. 
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APPENDIX 

Diflusion term 

For face 1, at the midpoint (i.e. 
l(c), the diffusion term is 

= 0, q = - 1) of the control surface as shown in Figures l(b) and 
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where k =  1-5 are the local node numbers in the counterclockwise sense as shown in Figure l(c). The 
other terms on the right-hand side of the above expression have already been defined in Section 2. 
Similarly, for control volume faces 2, 3 and 4 the diffusion coefficients are respectively 

where k =  1-5. If we define local nodes 1 , 2 , 3  and 4 as the west, south, east and north neighbours of 
node P respectively as shown in Figure l(b), the final expressions for the diffusion coefficients for a 
control volume can be written as 

D, = DIFFA(4) + DIFF-2(4) + DIFF-3(4) + DIFF-4(4), 
Ds = DIFF-1(2) + DIFF2(2) + DIFF-3(2) + DIFF-4(2), 
D, = DIFF-1(3) + DIFF2(3) + DIFF-3(3) + DIFF-4(3), 
D, = DIFF-I( 1) + DIFF2( 1) + DIFF-3( 1) + DIFF-4( l), 
Dp = DIFF-1(5) + DIFF-2(5) + DIFF-3(5) + DIFF-4(5). 

Convection term 

For face 1, again at the midpoint, the convection term is approximated as 

Here the midpoint is ( 5  = 0, q = -1) for positive F( ' )  and (5 = 0, q = 1) for negative F(') .  Combining 
both possibilities in a single expression, we get 

Similar expressions for the other surfaces (CONVJ, CONV-3 and CONV-4) of a control volume can 
be obtained. Now, rearranging the terms and writing expressions for each node of a control volume, 
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we get 

Cs = [C-l(2) max(F('), 0) + C-2(2) max(Ff2), 0) + C-3(2) m a ~ ( F ( ~ ) ,  0) 

+ C_4(2)ma~(F(~),  O)] - [C-I1(3)max(-F('), 0) + C J 2 ( l ) m a ~ ( - F ( ~ ) ,  O)], 

Cp = [C-1(5) max(F('), 0) + C J ( 5 )  max(F(2), 0) + C-3(5) r n a ~ ( F ( ~ ) ,  0) 

+ ~ - 4 ( 5 )  m a x ( ~ ( ~ ) ,  o)], 

where the subscripts N, S, E and W denotes the neighbouring nodes as defined earlier and the 
remaining terms of CONV-1, CONV-2, CONV-3 and CONV-4 can be included in the term b of 
equation (15). Finally, the coefficients can be represented as 

up = C, - D, + rnax(C,, 0) + max(Cs, 0) + max(CE, 0) + max(Cw, O), 
a, = DN + max(-CN, 0), 
uE = D, + max(-C,, 0), 

us = Ds + max(-Cs, 0), 
uw = D, + max(-Cw, 0), 

b = SS - max(cN, 0)(4, j + l  - 4i.j) - max(C~, 0)(4, j - 1  - 4 i . j )  

- max(c,, 0)(4;+,, j - 4;,;) - max(cw, OX4i-1,  j - 4;,,h 
where SS consists of source terms as well as any other terms which cannot be included in the other 
coefficients defined above. 
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